
Abstract The impact of grain boundary junctions on

the coarsening of grain boundary networks is reviewed.

The various kinds of junctions are introduced, the dy-

namic steady state configurations are defined, and their

equation of motion is derived. It is shown that a limited

junction mobility can effectively hinder grain growth,

in particular in fine grained materials. The theory is

substantiated by computer simulations and supported

by experimental results. We propose to utilize Grain

Boundary Junction Engineering as an effective tool for

microstructure control.

Introduction

Real materials are generally composed of a large

number of small crystallites. The contact surface of

adjacent grains is referred to as grain boundary. The

arrangement of grain boundaries of a polycrystal

comprises a 3D contiguous network which requires

that grain boundaries form junctions, i.e. triple lines

and quadruple points. Traditionally, the evolution and

properties of the granular assembly of a polycrystal are

described entirely in terms of grain boundary charac-

teristics while the junctions are tacitly assumed not to

affect microstructure development and thus, can be

disregarded. That is particularly reflected by the well

known von Neumann–Mullins relation. According to

this approach, grain boundary junctions do not affect

grain boundary motion, and their role in grain growth

is reduced to maintain the thermodynamically pre-

scribed equilibrium angles at the locations where

boundaries meet.

In the current study experimental data, theoretical

concepts, and computer simulations of grain boundary

systems moving with the junctions are considered with

respect to the process of grain growth in 2D systems, in

particular with regard to the controlling kinetics.

In the following, we will demonstrate that grain

boundary junctions constitute defects on their own

with specific thermodynamic and kinetic properties

and that they do influence the kinematics and dynamics

of grain microstructure evolution and thus, affect the

mechanical, physical, and chemical properties of a

processed polycrystalline material. This paper reviews

recent progress in the field of grain boundary junction

behavior. For details the reader is referred to refer-

ences [1–5].

Types and kinematics of grain boundary junctions

Geometrical characterization

There are two fundamental types of grain boundary

junctions in bulk polycrystalline materials, triple lines,

and quadruple points. A triple line forms where 3 grain

boundaries meet, whereas a quadruple point is the

geometrical location where four grains come into

contact. There is a large variety of potential triple lines
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and quadruple points in polycrystalline materials since

their geometry is determined by the constituting grain

boundaries, each of which has five degrees of freedom.

Hence, a triple line is defined by 12 independent geo-

metrical parameters; a quadruple point requires up to

21 quantities for a unique geometrical characterization.

Despite this large parameter space of potential triple

lines and quadruple points, there are only very few

configurations of boundaries that will cause a steady

state motion of the connected boundary systems. Such

configurations will be introduced and discussed in the

following.

Kinematics of grain boundary junctions

Triple lines

Essentially we distinguish two fundamental types of

triple junctions with steady state kinematics, namely a

junction with a specific shrinking grain (Fig. 1a) and a

specific growing grain (Fig. 1b). For steady state mo-

tion the boundaries have to obey special boundary

conditions with respect to grain boundary surface

tension and mobility.

Below, we will derive the equation of motion for

such configurations.

To begin with, we consider a system of three grain

boundaries with a common triple junction as depicted

in Fig. 1a. The system is understood to be quasi-2D, i.e.

the boundaries are assumed to run straight through the

sample thickness. Two of the boundaries are curved,

which results in a force on the entire boundary–junc-

tion-system. The convex shape of the boundaries cor-

responds to the curvature of grains with less than six

sides in a polycrystal. Hence, this geometry is repre-

sentative for 2D grains with n < 6, where n is the

number of sides of a grain.

The normal velocity of a curved boundary is given

by

v ¼ mbcK ð1Þ

where K is the curvature, mb and c are the mobility and

energy of the boundary, respectively.

During steady state motion of the whole system

the horizontal velocity V is related to the normal

displacement rate v

v ¼ V cos u ¼ V
y0

1þ ðy0Þ2
� �1=2

ð2Þ

where y(x) is the shape of the upper part of the curved

boundary in Fig. 1a (due to the mirror symmetry of the

problem relative to the x-axis, the shape of the lower

boundary is the negative equivalent).

From Eqs. (1) and (2) and taking into account the

expression for the curvature K

K ¼ � y00

1þ ðy0Þ2
� �3=2

ð3Þ

we obtain the equation for the shape of the moving

grain boundary

y00 ¼ � V

mbc
y0 1þ ðy0Þ2
� �

ð4Þ

With the boundary conditions y(0) = 0, yð1Þ ¼ a=2,

y0ð0Þ ¼ tan h, Eq. (4) has the solution

yðxÞ ¼ n arc cos e�x=nþc1

� �
þ c2 ð5Þ

n ¼ a=2h; c1 ¼ lnðsin hÞ; c2 ¼ �nðp=2� hÞ . The angle h
is the angle at the tip of triple junction (Fig. 1).

With Eq. (5) the local grain boundary velocity can

be calculated from Eq. (2). The meaning of the length a

and the angle h is clear from Fig. 1a.

A driving force c(2cosh – 1) acts on the triple junc-

tion from the curved boundaries. Introducing the

mobility of the triple junction mTj, its velocity reads

VTj ¼ mTj cð2 cos H� 1Þ ð6Þ

Note that the ratio mb/mTj has the dimension of a

length.

(a)

(b)

Fig. 1 (a) Configuration of grain boundaries at a triple junction
during steady state motion for n < 6. (b) Configuration of grain
boundaries at triple junctions during steady state motion for
n > 6
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The horizontal velocity V of steady state motion of

the grain boundary system is

V ¼ 2hmbc
a

ð7Þ

From the condition V = VTj the steady state value for

the angle Q can be found from the equation

2h
2 cos h� 1

¼ mTja

mb
¼ K ð8Þ

This defines the criterion L, which determines the

migration behavior of the connected boundary system,

as will be discussed below.

If a triple junction is perfectly mobile and does not

drag grain boundary motion, then K!1 and

h! p=3, i.e. the equilibrium angle at a triple junction

in the uniform grain boundary model. In contrast,

however, if the mobility of the triple junction is rela-

tively low, i.e. mTja> mb then h! 0 [6]. It is particu-

larly emphasized that the angle h is comprehensively

defined by the dimensionless parameter L, which, in

turn, is a function of both the ratio of triple junction

and grain boundary mobility, and the grain size. Thus,

a ‘‘triple junction of low mobility’’ means a ‘‘small

value of L’’.

Experimental investigations on such grain boundary

systems (Fig. 2) revealed that triple junctions can have

a low mobility [7–9]. In particular, it the vertex angle h
at the triple junction can markedly deviate from the

equilibrium value, in case of a low triple junction

mobility. In fact, a transition from triple junction

kinetics to grain boundary kinetics was observed

(Fig. 2).

The steady state motion of a grain boundary system

shown in Fig. 1b can be treated by analogy. It repre-

sents the case of 2D grains with n > 6. Again, we assume

uniform grain boundary properties and quasi-2D

geometry. The steady state motion of this assembly is

determined by the set of Eqs. (1), (2), and (3) only with

different boundary and initial conditions; y¢(0) = ¥,

y0ðx0Þ ¼ tan h, y(0) = 0 to yield

yðxÞ ¼ � x0

ln sin h
arc cos e

x
x0

ln sin h
� �

ð9Þ

From the imbalance of surface tensions at the triple

junction follows a triple junction migration rate

VTj ¼ mTj cð1� 2 cos hÞ ð10Þ

The boundary curvature causes a horizontal steady

state velocity of the boundary system

V ¼ �mbc
x0

ln sin h ð11Þ

The length 0 – x0 represents essentially the grain size

(Fig. 1b). From the condition VTj = V we obtain for

n > 6

� ln sin h
1� 2 cos h

¼ mTjx0

mb
¼ K ð12Þ

Obviously, for L � 1, when the boundary mobility

determines the kinetics of the system the angle h tends

to its equilibrium value (p/3). Again, the angle h
changes when a low mobility of the triple junction

starts to drag the motion of the boundary system.

However, as apparent from Eq. (12) and Fig. 1b, in this

case the steady state value of the angle h is larger than

in static equilibrium.

As shown in [1–8], the mobility of grain boundary

junctions is finite; the activation enthalpy of it is, as a

rule, essentially higher than the activation enthalpy of

grain boundary mobility. So, under definite conditions,

particularly at low temperatures, grain boundary

junctions can drag grain boundary motion and, conse-

quently, slow down grain growth. Another source of

junction drag results from topology, because the mere

existence of grain boundary junctions hinders grain

boundary motion. Contrary to other obstacles to grain

boundary motion, junctions cannot be circumvented

but must be dragged along. That is why junction drag

can be stronger than impurity and particle drag.

Quadruple junctions

A basic type of quadruple junction with steady state

kinetic behavior is sketched in Fig. 3. It is composed of
Fig. 2 Measured temperature dependence of the criterion L for
Zn tricrystals [7]
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four grains which touch at the point O. The lines in this

figure represent triple junction lines.

The shape of the triple lines resembles the shape of

a grain boundary in a tricrystal comprising a model

grain boundary system with a triple junction; far from

the quadruple point all three boundaries are rectilinear

and parallel each to other.

In such a configuration motion proceeds under the

action of the triple junction line tension c1. We will

consider this problem in the framework of a uniform

triple junction model, i.e. all triple lines possess con-

stant and uniform line tensions and mobilities irre-

spective of the misorientation of the adjacent grains

and the crystallographic orientation of the boundaries.

The given assumptions require symmetry with re-

spect to any plane that contains the curved triple line

(Fig. 3). The velocity of the triple junction defines the

differential equation of the shape y(x) of a moving

triple junction. The velocity of normal motion of a

triple junction element is

v ¼ mTjc
1j ð13Þ

where

j ¼ �y00 1þ ðy0Þ2
h i�3=2

ð14Þ

(c)

(a) (b)Fig. 3 (a) Four grain
arrangements with four triple
lines (OA, OB, OC, OE) and
one quadruple point at O.
The angle h1 is the vertex
angle of a triple line at the
quadruple junction, a is the
(half) dimension of the grain
bounded by the OA, OB, and
OC. (b) Arrangement of a
four grain system: DD¢D¢¢
denotes a plane perpendicular
to the x-axis that intersects all
four grains (see Fig. 3c). (c)
Section through the four grain
arrangement shown in
Fig. 3b. The lines DD¢, D¢D¢¢,
and D¢¢D denote the grain
boundaries between the three
exterior grains and the
interior grain
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is the curvature of the triple line element. During

steady-state motion the horizontal velocity V is con-

stant (Fig. 4)

v ¼ V cos h1 ¼ Vy0 1þ ðy0Þ2
h i�1=2

ð15Þ

Hence,

y00 ¼ � V

mTjc1
y0 1þ ðy0Þ2
h i

ð16Þ

with the boundary conditions y(0) = 0,

yð1Þ ¼ a=2; y0ð0Þ ¼ tan h1, where y(x) is the shape

function of the triple line, h1 is the angle at the tip of

the triple junctions at the quadruple point (see Fig. 3).

For derivation of the force F acting on the quadru-

ple point, let us consider a plane that contains the triple

line OC and the x-axis (Figs. 3a, 4). The components of

all triple line tensions acting on the quadruple junction

in this plane is F ¼ 2c1 cos 60 cos h1 þ c1 cos h1 � c1:

Then, the velocity of the quadruple point motion reads:

Vqp ¼ mqp½2c1 cos 60 cos h1 þ c1 cos h1 � c1� ¼
¼ mqpc

1½2 cos 60 cos h1 þ cos h1 � 1�
ð17Þ

where mqp is the mobility of the quadruple point.

Eqs. (3) and (4) define the problem comprehen-

sively. Integration of Eq. (3) yields the shape of a

steady-state moving triple junction system with a qua-

druple point. It reads

yðxÞ ¼ 1 arccosðe�x=1þC1Þ þ C2 ð18Þ

1 ¼ a
2h1
;C1 ¼ 1

2 lnðsin h1Þ2;C2 ¼ 1ðp=2� h1Þ.
Evidently, a grain boundary system with a quadruple

point can move in steady state.

The horizontal velocity V of steady-state motion of

the triple junction system is

V ¼ 2h1mTjc1

a
ð19Þ

From the condition V = Vqp for triple junction and

quadruple point motion (Eqs. (16) and (17)) we arrive

at the steady-state value of the angle h1:

Kqp ¼
mqpa

mTj
¼ 2h1

cos h1ð2 cos 60þ 1Þ � 1
¼ 2h1

2 cos h1 � 1

ð20Þ

If a quadruple point is perfectly mobile and does not

drag grain boundary motion, then Kqp !1 and

h1 ! p=3, which is the equilibrium angle between

quadruple point and triple junction line in the uniform

boundary and triple line model. By contrast, for a low

mobility of the quadruple point mqpa > mTj, then

h1 ! 0. The angle h1 is unambiguously defined by the

dimensionless parameter Lqp, which, in turn, is a

function of both the ratio of quadruple point and triple

junction mobility, and of the grain size.

Effect of junctions on microstructure evolution

Since quadruple junctions are difficult to visualize and

even more difficult to investigate experimentally, be-

cause they are true 3D objects which are hard to reveal

in non-transparent materials like metals, we will con-

fine our analysis in the following to triple lines in quasi-

2D configurations as depicted in Fig. 1a.

A fundamental equation that relates the growth rate

of 2D grains with their topology is the Von Neumann–

Mullins (vNM) relation [10, 11]. It was derived for

grain boundaries of uniform energy r and mobility mb

and equilibrium triple junctions

dS

dt
¼ p

3
mb cð2p� np

3Þ ¼
p
3

mbcðn� 6Þ ð21Þ

If the contact angle at the triple junctions deviates from

the equilibrium value 2p/3, the VNM relation has to be

modified

_S ¼ � Ab

1þ 1
K

½2p� nðp� 2hÞ� ð22Þ

where Ab = mbc is the reduced grain boundary

mobility, c is the grain boundary surface tension.

The rate of grain area change _S for grains of dif-

ferent topological classes depends on the parameter L.

For grains with n < 6 a limited triple junction mobility

lowers the steady state value of the angle h and the

shrinking rate decreases. For grains with n > 6 triple

junction drag increases the angle h and also reduces the

growth rate of such grains. In other words, micro-

O 

v 

V 

y 

x 

a 

C 

θ1

Fig. 4 Cross-section parallel to the grain boundary triple line
OC in Fig. 3
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structural evolution is slowed down by triple junction

drag for any n-sided grain.

In the classical vNM approach (i.e. K!1) the

topological class n* of stable grains, i.e. _Sðn�Þ ¼ 0, is

n* = 6. For finite L n* is not constant any more but

depends on L [3].

For n < 6

n�L ¼
2þ

ffiffiffi
3
p

K

1þ
ffiffi
3
p

6 K
ð23Þ

and for n > 6:

n�H ¼
6

1� 6
pKB

ð24Þ

where B ¼ �
ffiffi
3
p

ln sin p=3. Grains with a number of sides

nL
* < n < nH

* become locked and can neither grow nor

shrink [1, 3]. Since nL,H
* is distinctly different from the

vNM limit n* = 6 for small L the influence of these

locked grains may be very important for the micro-

structural stability, in particular of ultra fine grained

and nanocrystalline materials.

When the triple junction influence is tangibly large,

but nevertheless, grain growth can still be considered as

governed by grain boundary motion, the average grain

area ÆSæ changes practically linear with time, however,

the rate of grain area changes _S, contrary to the vNM

relation, is defined not only by the topological class n

but by the criterion L as well: _S ¼ _Sðn;KÞ (Figs. 5,6).

It is emphasized that triple junction drag does not

only slow down grain microstructure evolution, but

changes the final distribution of grains of different

topological classes as well [12]

dK
dt
¼ �~b

2p� nðp� 2hÞ
K

ð25Þ

where ~b is a kinetic coefficient. For rather large L the

derivative dK
dt

approaches:

dK
dt
¼ b

n� 6

K
ð26Þ

with b ¼ ~bp=3.

Eqs. (25) and (26) demonstrate that triple junction

drag affects the growth of grains of different topolog-

ical classes n markedly different.

If triple junction drag grows very strong, the triple

junctions eventually determine the kinetics. This will

be referred to as triple junction kinetics. Under triple

junction kinetics grains are bordered by straight lines,

i.e. the grain boundaries in a 2D polycrystal represent a

system of polygons. Moreover, the system of polygons

tends to approach a system of equilateral polygons.

The only exception is the triangle which will collapse

without transforming into a regular polygon.

The rate of grain area change of a regular n-sided

polygon with an interior and exterior circle of radius ~r
and ~r, respectively, under triple junction kinetics can be

described by [3]

_S ¼ �mcn~R sin
2p
n

� �
2 sin

p
n

� �
� 1

h i

¼ �2mtjcn~r sin
p
n

� �
2 sin

p
n

� �
� 1

h i
ð27Þ

Computer simulations

In the VNM approach only a single grain and its

behavior is considered in an unspecified, i.e. average

environment. To study the effect of discrete granular

arrangements we employed computer simulations of

2D grain growth. Curvature and boundary tension

driven grain growth is conveniently represented by a

(virtual) vertex model [13–15]. In such model, the

driving force is the net grain boundary surface tension

at a vertex. A vertex can be a triple junction or any

corner on a polygonized grain boundary. In a time

increment, the equation of motion is solved simulta-

neously for all vertices. Each vertex is assigned a

mobility so that different mobilities for triple junctions

and boundaries can easily be implemented.

In Fig. 7 the simulated evolution of the microstructure

of a 2D polycrystal is presented at various stages of

grain growth. As apparent from Fig. 7a for uncon-

strained grain boundary motion the grains are

bordered by curved boundaries. The dependence of

the mean grain area on time, and especially the

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

2 10864

S

n
12

.

Fig. 5 Simulation result for 0:1\K\1:0 _S as function of n for
0.1 < L < 10. Solid squares are the results of computer
experiment, the line is the von Neumann–Mullins relation
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dependence of the rate of grain area change _S vs the

topological class n of a grain are shown in Fig. 7b,c.

They reflect all features that are peculiar to a ‘‘von

Neumann–Mullins polycrystal’’: ÆSæ increases linearly

with annealing time; the rate of grain area change _S is

linear in n, and the line _SðnÞ intersects the axis n at

n = 6, i.e. _S ¼ 0 at n = 6. The slope of the line
_SðnÞ ¼ pmbcb

3
is as predicted by the vNM relation. In

essence, for boundary controlled grain growth of a

homogeneous system the vNM approach is convinc-

ingly reproduced.

In order to study the effect of triple junction

mobility on grain growth, two situations were consid-

ered. The first case related to the kinetics, when the

triple junction influence is tangibly large, but never-

theless, the evolution of the system can be described as

a result of curvature driven grain boundary motion.

This causes the boundaries to become much more

straight (Fig. 8a). When L is still relatively large,

0.4 £ L £ 5.0, the mean grain area ÆSæ changes linearly

with time t, which reflects the nature of the controlling

grain boundary kinetics of the system at this stage

(Fig. 8b). However, the quantitative variation of the

rate of grain area change _S on topological class n,

which is a straight line for pure grain boundary kinetics

(Fig. 7c) is transformed to an area under the constraint

of a finite triple junction mobility (Fig. 5). For all

topological classes a large scatter of _SðnÞ is observed.

While for unconstrained grain boundary kinetics (infi-

nite junction mobility) _S is a function of n only, for a

system with finite junction mobility _S becomes a

function of both n and L, _S ¼ _Sðn;KÞ (Fig. 5). The

straight line in Fig. 5, which describes the vNM

relationship, has the slope
pmbcb

3
and _Sðn ¼ 6Þ ¼ 0.

a) 

5 10 15 20 25

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

.
S .

S

/\
5 10 15 20 25

/\

b) 

0.70
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0.80

0.85

0.90

0.95

Fig. 6 The rate of grain area change _S as a function of L (a) for
grains with n = 4. Filled squares are the results of computer
simulations. The solid line represents the theoretical prediction

for intermediate kinetics (5 < L < 25), the dotted line corre-
sponds to the von Neumann–Mullins relation
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Fig. 7 (a) Simulation results
for a 2D polycrystal for grain
boundary kinetics
( K!1£. (a)
Microstructure at S(t)/
S0 = 17.2; (b) normalized area
S(t)/S0 versus time t; (c) _S as
function of n

7736 J Mater Sci (2006) 41:7730–7740

123



As the parameter L decreases the influence of triple

junction drag becomes obvious not only in the _S� n

diagram, but also in a change of the dependency ÆSæ(t)

(Fig.9).

The dependency _SnðKÞ clearly demonstrates that for

a given n, _SðKÞ is not represented by a point anymore,

but by a line (Fig.10). We note the good agreement

between the computer experiment and theory. The

expressions

kn\6 �
_S

Tj
n\6

_Sn\6

ffi
n 6þK

ffiffi
3
p

2þK
ffiffi
3
p

n� 6
ð28aÞ

kn>6 �
_S

Tj
n>6

_SVNM
n>6

ffi
n 1� 6

pKB

� �
� 6

n� 6
ð28bÞ

represent the ratio of the rate of grain area change for

finite triple junction mobility and for the ideal vNM

case. For the same value of L grains with n < 6 deviate

more strongly from the ideal vNM case than do grains

with n > 6. For example, grains with n = 4 are under

triple junction control (Fig. 10a), while the growth of

grains with n = 9 is still governed by boundary kinetics

(Fig. 10b). In other words, triple junction drag does not

only slow down the rate of grain growth, but also

changes the grain microstructure of 2D polycrystals.

This is also evident in experimental observations of

grain growth in thin foils [16]. At the stage of the

process where a triple junction influence becomes

obvious, i.e. when the time dependency of the mean

grain size is linear, the grain size distribution becomes

wider.

For grain growth strictly controlled by triple junc-

tion motion, theory predicts that the grain boundaries

become flat and that the grains approach a shape of

equilateral polygons. A polygon of arbitrary shape will

be transformed into an equilateral polygon, and any

deviation from an equilateral polygon will generate a

force to restore the equilibrium shape. The only

exception is a triangle, i.e. a grain of topological class n

100
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Fig. 8 Simulation result for
0.1 < L < 1.0. (a)
Microstructure at S(t)/
S0 = 10.0; (b) average area
< S > versus time t; _S as
function of n for is given in
Fig. 5. Solid squares are the
results of computer
experiments, the line
represents the von Neumann–
Mullins relation
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Fig. 9 Grain size versus time for 0.01 < L < 1.0
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Fig. 10 The rate of grain area change _S as a function of L. (a) for
grains with n = 4. Filled squares are the results of computer
simulations. The solid line represents the theoretical prediction
for intermediate kinetics (5 < L < 25), the dotted line corre-

sponds to the von Neumann–Mullins relation. (b) For grains with
n = 9. The solid line is the theoretical prediction for intermediate
kinetics, the broken line represents triple junction kinetics
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= 3 is always unstable and bound to disappear. The

computer simulations fully confirm the theoretical

predictions. The ratio

g ¼
Pn

i¼1
Lcurv

Li
str

n
ð29Þ

gives a quantitative measure of grain boundary curva-

ture, where Lcurv is the length of a curved boundary

and Lstr is the distance between the two corresponding

triple junctions (Fig. 11a). When L tends to zero, g! 1

(Fig. 11b).

To assess the theoretical prediction that under triple

junction kinetics all 2D grains of arbitrary shape

become converted to equilateral polygons—except for

triangles—we define the parameter

bn ¼
L1

L2
þ L2

L3
þ � � � þ Ln�1

Ln
þ Ln

L1

n
ð30Þ

where Li is the length of the i-th side of an n-sided grain.

When the shape of a grain approaches an equilateral

polygon, bn ! 1. The only exception is a triangle, which

is unstable and has to disappear, i.e. b3 should not

converge toward b3 = 1. The behavior of bn with time

was determined from the computed microstructure,

including b3 (Fig. 12). Apparently for all studied n-sided

polygons bn ! 1, except for b3 which changes randomly.
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Fig. 11 Measure of boundary
straightness: (a) diagram
explaining how the value g
was measured; (b) computer
simulation (filled squares) up
to St/S0 = 10 and theoretical
prediction (dash line) of
g(logL)
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The function _SðnÞ for triple junction kinetics is

presented in Fig. 13. The curve is calculated according

to Eq. (27) while the symbols represent simulation

results. Except for the intrinsically unstable triangular

grains (n = 3), the theoretical predictions are in good

agreement with the computer experiments. We note

that _S rises with n and approaches a limit (Eq. (27)) at

variance with the predictions of the vNM relation.

Grain boundary junction engineering

The effects of triple junctions lend themselves to

influence microstructural evolution and thus, the ter-

minal microstructure after heat treatment during pro-

cessing of a material. This is referred to as grain

boundary junction engineering. In the following, we

will present some cases where the effect of junctions

may lead to a considerable change of microstructural

evolution during grain growth.

In recent years the thermal stability of grain mi-

crostructures has attracted special attention in partic-

ular for nanocrystalline materials. To maintain the

beneficial properties of a fine grained material the

microstructure should be rather stable. The traditional

way to stabilize grain microstructures utilizes impurity

drag or Zener drag. However, both methods change

the chemistry of the material and, as a consequence, its

physical and mechanical properties. Besides, the effi-

ciency of microstructure stabilization by impurities and

particles is often overrated [17]. We propose another

approach, which is based on the essential difference

between grain microstructures formed by junction

kinetics and by boundary kinetics.

Evidently, the grain microstructure obtained during

grain growth governed by junction mobility differs

markedly from the microstructure obtained under grain

boundary kinetics. This behavior can be utilized to

influence microstructural evolution during recovery,

recrystallization and especially grain growth, which will

be referred to as Grain Boundary Junction Engineering.

One possible way of junction kinetics treatment

(JKT) is schematically depicted in Fig. 14, which shows

a sequence of annealings. As detailed in [18], the

annealing at a relatively low temperature initiates grain

growth at triple junction kinetics, and the obtained

grain microstructure resulting from this treatment is a

typical ‘‘junction’’ microstructure, a system of polygo-

nal grains which tends to assume an equilateral shape,

etc. Fig. 15 presents the results of grain growth studied

by computer simulations. Evidently, a subsequent

annealing at boundary kinetics conditions (after junc-

tion kinetics) requires a much larger time to reach the

same grain size. An increase of the effect of JKT as

expressed by the grain area ratio after junction con-

trolled growth, St/S0, conspicuously delays subsequent

regular grain growth under boundary kinetics.
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